
Parallel Popular Crime Pattern Mining in
Multidimensional Databases

BVS. Varma#1, V. Valli Kumari*2

#Department of CSE, Sri Venkateswara Institute of Science & Information Technology
Tadepalligudem, India

*Department of CS&SE, AU College of Engineering, Andhra University
 Visakhapatnam, India

Abstract— Discovering interesting patterns like popular
crime patterns from various geographical locations plays an
important role in data mining and knowledge discovery
process. The researchers have been extended the frequent
patterns to different useful patterns such as sequential, cyclic,
emerging, periodic and many other interesting patterns.
PPCrime-growth algorithm has been introduced and it
involves in mining popular crime patterns from various
geographical locations. In performing, it captures the
popularity of individual crimes among their peers or groups
or crimes at their local site. PPCrime-tree will be constructed
at every local node in the first phase which captures the
essential data for the global mining process. In the next phase
popular crime patterns will be extracted from PPCrime-tree
in parallel. PPCrime-algorithm will work in parallel at each
local site in order to reduce I/O cost and also Inter-process
communication between nodes. Our method generates all
popular crime patterns in the final phase. The experiment
results show that our PPCrime-method is highly efficient in
multidimensional databases.
Keywords—Popular patterns, crime patterns, geographical
locations, inter-process communication, parallel algorithms,
large databases.

I. INTRODUCTION

In today’s information era databases are essentially
distributed. The organizations that operate in global
markets need to perform data mining on either
homogeneous or heterogeneous distributed data sources.
The distributed data mining is the process of mining data
that has been partitioned into one or more physically /
geographically distributed compartments. Distributed data
mining provides a framework for scalability into smaller
subsets that require computational resources individually.
In the literature, one of two statements is commonly
accepts as how data is distributed across the sites either in
homogeneously or heterogeneously. Both the viewpoints
accept the conceptual view point that the data tables at each
site are partitions of a single global table. In the
homogeneous database, the global table is horizontally
partitioned. The tables at each site are subsets of a global
table and they have exactly the same attributes. In the
heterogeneous database, the global table is vertically
partitioned and each site contains a collection of columns
that do not have same attributes. But, each tuple at each site
is assumed to contain a unique identifier to facilitate
matching. Distributed data mining addresses the impact of
distribution of users, software’s and computational
resources on the data mining process.

The size and high dimensionality of datasets normally
available as input to the problem of pattern detection,
makes it an ideal problem of solving multiple nodes in
parallel. Memory and CPU speed limitations are the
primary reasons that faced by a single node. So it is
significant to design efficient parallel algorithm to do the
job. The other reason comes from the fact that many
transactional databases are already available in parallel
databases or they are distributed at multiple nodes. The cost
of bringing them all at one node or one computer for
discovering various patterns can be prohibitively
expensive.

However, tree based approaches have been adopted in
most of the studies in this field on finding frequent patterns
or other interesting patterns. In this paper we are proposing
an efficient method to extract popular crime patterns using
PPCrime-algorithm that obtains global popular crime
patterns from various nodes. The rest of the paper is
organized as follows. Section 2 discussed with related work
and section 3 summarizes the problem definition and
Section 4 describes PPCrime – method to find popular
crime patterns in large databases. Our experimental
analysis will be shown in section 5. Finally, we conclude
the paper in section 6.

II. RELATED WORK

Mining of useful patterns is challenging area of interest in
data mining and knowledge discovery research.
Implementing frequent patterns is one of the most
important in association rule mining. An itemset is frequent
if its support is not less than the user given minimum
support threshold. Apriori Algorithm[1] was the
fundamental algorithm to mine frequent patterns from static
databases and was introduced by Agarwal et al., in 1993
which requires k number of scans to generate k-itemset.
Researchers had improved the quality of association rule
mining by introducing a huge number of algorithms and
their mutations which are proposed on the basis of Apriori
Algorithm. Association rule mining process is divided into
two steps. In the first step it finds the frequent itemsets
whose support threshold is greater than or equal to the
given support measure. In the second step it generates
strong association rules from the frequent itemsets. Han et
al., in 2000 introduced a high compact support-descending
FP-tree and FP-growth algorithm [2] to mine frequent
itemsets without generating candidate sets which requires
only two database scans. A large number of patterns are

BVS. Varma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 858-863

www.ijcsit.com 858

normally generated when support threshold is set to low,
and most of them are found to be insignificant depending
on the application or user constraint. As a result several
techniques have been proposed recently to reduce the desire
result set by some of the user interesting parameters such as
closed [3] , kmost [4], maximum length [5] etc., are found
to be useful in discovering frequent patterns of special
interest among users. The other user interesting time
interval parameter may be a regular pattern. Users may
perhaps be interested on frequent patterns that occur at
regular intervals. For example, a web site administrator to
improve web page design may be interested in regularly
visited web pages rather than on the heavily hit web pages
for a specific period of time. The idea of maximal frequent
itemset [6] was proposed in the year 1998, an itemset is
maximal frequent if its support is frequent and it should not
be a subset by any other frequent itemset. After the
frequent patterns came into existence, numerous techniques
have been introduced. These works are categorized into
two main “categories”. First “category” mainly focuses on
algorithmic efficiency i.e., to avoid the candidate
generation-and-test approach of the Apriori algorithm, a
tree-based algorithm called FP-growth was proposed to
build an FP-tree to capture the contents of trans-actional
database (TDB) so that frequent patterns can be mined
recursively from the FP-tree with a restricted test-only
approach. Techniques in the second “category” mainly
focused on extending the notion of frequent patterns to
other interesting or important existing patterns such as,
episodes, maximal, clusters and closed item sets. However,
the mining of these patterns are based on the
support/frequency measure. While support/frequency is a
useful metric, support-based frequent pattern mining may
not be sufficient to discover. Crime pattern algorithms
[7][8][9][10] used to derive crime patterns in order to
assist public safety and security agencies in achieving their
objective of deterring crime and promoting citizen’s safety.
Leung C.K.S. et. al [11] [12] introduced popular pattern
mining in transactions and in popular friends in social
groups.

III. PROBLEM DEFINITION

In this section the basic definitions of the problem
described.
Crime Transaction Popularity: Pop(X, ctj) of a pattern X
in crime transaction ctj measures the membership degree of
X in ctj. We compute the membership degree based on the
difference between the crime transaction length |ctj| and
pattern size |X|.

,൫ܺ݌݋ܲ ௝൯ݐܿ ൌ หܿݐ௝ห െ	 |ܺ|

Long Crime Transaction Popularity: Pop(X, ctmaxCTL(X))
of a pattern X in crime transaction ctmaxCTL(X) measures the
membership degree of X in ctmaxCTL, where ctmaxCTL(x) is the
crime transaction having maximum length in DBX .

,൫ܺ݌݋ܲ ௠௔௫஼்௅ሺ௑ሻ൯ݐܿ ൌ ൫max௖௧௝ఢ	஽஻೉|݆ܿݐ|൯ െ	 |ܺ|

Popularity: Pop(X) of a pattern X in the CTDB measures
an aggregated membership degree of X in all crime
transaction in the CTDB. It is defined as an average of all
crime transaction popularities of X.

ሺܺሻ݌݋ܲ ൌ 	
ଵ

|஽஻೉|
	∑ ,ሺܺ݌݋ܲ ∈஽஻೉	௝௖௧ೕݐܿ ሻ

Popular Crime: A user specified minimum popularity
threshold min_pop is given, a crime X is considered
popular if its popularity is atleast min_pop (i.e Pop(X) ≥
minpop).

Popularity Pop(X): of a pattern X in the CTDB measures
an aggregate membership degree of X in the CTDB. It is
defined in terms of ܮܶܥ݉ݑݏሺܺሻ	=	∑ ∈ವಳ೉	௝௖௧ೕݐܿ|

| as

follows.

ሺܺሻ݌݋ܲ ൌ 	
1

|௑ܤܦ|
	 ෍ ,ሺܺ݌݋ܲ ௝ሻݐܿ
௖௧ೕ∈஽஻೉

ൌ	
1

|௑ܤܦ|
	 ෍ ሺ|ܿݐ௝
௖௧ೕ∈஽஻೉

| െ |ܺ|ሻ

ൌ	
ሺܺሻܮܶܥ݉ݑݏ

|௑ܤܦ|
െ	 |ܺ|

The proposed parallel mining technique to extract popular
crime patterns from various geographical locations which
was incorporated in multi-dimensional database.
Performing popular crime pattern mining which captures
the popularity of individual crimes among their peers or
groups or crimes. The procedure works in parallel at each
local site in order to reduce I/O cost and inter-process
communication generates all popular crime patterns in the
final phase.

IV. PARALLEL POPULAR CRIME MINING PROCESS

In this section we describe our proposed method called
PPCrime approach to extract popular crime patterns in
parallel at different locations. Different nodes indicate
different locations, data where each node maintains
resources like processor, memory, etc. Accumulate
different databases from different resources and then divide
this database into specified number of partitions with non-
overlapping partitions in order to maintain data in multi
dimensions at specified locations. Consider the instance
crime database in the process of mining popular crime
patterns in parallel.

Assume DB = {p1, p2, p3,……pn} be a number
of partitions in parallel in a homogeneous distributed
system. The database DB is alienated into equal number of
n partitions like D1, D2, D3,……Dn, and each partition Di is
assigned to each individual partition pi. Let popularity of
Crime C is represented as Popi(C) in dbi and support count
of Crime C is represented as supi(C) and maximum
transaction length as maxTLi(C) in dbi. Pop(C), sup(C),
maxTL(C) are the global popularity threshold, global
support count and maximum transaction length of crime C

BVS. Varma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 858-863

www.ijcsit.com 859

in database DB respectively. Let λ is user given minimum
popularity threshold. To accumulate all regi(S) and supi(S)
from each partition to find global popularity Pop(C), global
support count sup(S) and global maximal transaction length
maxTL(C) respectively. Popular crime pattern C is mined
which satisfies user given global popularity.

TABLE 1 CRIME DATABASES AT MULTIPLE LOCATIONS

In this process first databases are scanned once to get the
count of every single item in every dimension. Finding
popular 1-items are those whose calculations pass their
corresponding threshold. In the second step, < x: support(x),
maxCTL(x), Pop(x)> information is acquired at each domain
items. The crimes with popularity which are less than given
popularity are not eliminated as in frequent pattern mining
instead their super pattern mining will takes place into
considerations and checked whether they are popular crimes
or not. Hence, super-pattern popularity checking is required
to find the crimes that are popular or not. Now crimes appear
in the pop-tree as long as their counts pass their
corresponding threshold. Thus, a popular crime pattern
which includes the whole taxonomy information about a
crime is also interesting to the user. Finally, all popular
crime patterns are generated by using recursively mining the
pop-tree. This procedure is continued until all popular
patterns for all single crimes are generated. The popular
crimes which are generated at every dimension are
accumulated at header node and then popular crimes are
extracted based on user given popularity threshold globally.

Consider the database Table 1, which indicates a list of
crime data in two different locations. Table 2 represents
popularity of each crime which is in two separate locations.
Here, database is scanned once to get the count of every
single crime in every single dimension. The popularity 1-
dimensions are those whose counts pass their
corresponding minimum popularity threshold. The
minimum popularity threshold considered as 1.5 and the
crimes whose count is less than minpop value are not
eliminated as in frequent patterns instead their superset
popularity checkup is considered. If its superset value
exceeds minpop value then that crime will not be
eliminated satisfies downward closure property. This
process is repeated for n-dimensions.

Mining of popular crime patterns has been proposed by
PPCrime-growth algorithm which consists of two key
methods.
1. Construction of global PPCrime-tree
2. Mining of popular patterns from global PPCrime-tree

Recall that, to mine popular crime patterns, the PPCrime-
growth algorithm applies two key procedures: (i)

construction of a PPCrime-tree at local and (ii) mining of
popular crime patterns from the PPCrime-tree. The
PPCrime-growth finds popular crime patterns from the
PPCrime-tree, in which each tree node captures its
occurrence count, total transaction length, and maximum
crime transaction length. The algorithm finds popular crime
patterns by constructing the projected database for potential
popular crime itemsets and recursively mining their
extensions. While constructing the conditional database
from a projected database, perform a super-pattern
popularity check for extensions of any unpopular crime,
and delete the crime only when it fails the check. Such
pruning technique was called as a lazy pruning. Recall that
the PPCrime-growth recursively mines the projected
databases of all items in Header table Table 4. Before
constructing the projected database for a crime C in Header
table, output the crime as a popular crime pattern if its
popularity is at least minpop.

From Crime Location 1, calculate the popularities of each
individual crime as follows

Pop(C1) = 18/4 – 1 = 3.5
Pop(C2) = 17/4 – 1 = 2.25
Pop(C3) = 21/5 – 1 = 3.2
Pop(C4) = 14/3 – 1 = 3.63
Pop(C5) = 10/2 – 1 = 4
Pop(C6) = 13/3 – 1 = 3.3

From Crime Location 2, calculate the popularities of each
individual crime as follows

Pop(C1) = 13/4 – 1 = 2.25
Pop(C2) = 13/4 – 1 = 2.25
Pop(C3) = 14/4 – 1 = 2.5
Pop(C4) = 4/1 – 1 = 3
Pop(C5) = 7/2 – 1 = 2.5
Pop(C6) = 3/1 – 1 = 2

The popularities of each individual crimes of various crime
locations are collected and stored at one place or in one
tabe as a multidimensional database can be seen in Table 2.

TABLE 2 CRIME DATABASES AT MULTIPLE LOCATIONS WITH
POPULARITY

Crime Location CL1 Crime Location CL2
CTid Crime Set CTid Crime Set

1 C1,C2, C3, C4, C5, C6 1 C3, C5, C6
2 C1,C2, C3, C4 2 C1,C2, C3, C4
3 C1,C2, C3, C5 3 C1,C2
4 C2, C3, C6 4 C1,C2, C3
5 C1, C3, C4, C6, 5 C1,C2, C3, C5

Crime Location CL1 Crime Location CL2

CTid
Crime Set

Pop CTid Crime Set Pop

1 C1 3.5 1 C1 2.25

2 C2 3.25 2 C2 2.25

3 C3 3.2 3 C3 2.5

4 C4 3.63 4 C4 3

5 C5 4 5 C5 3

6 C6 3.3 6 C6 3

BVS. Varma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 858-863

www.ijcsit.com 860

So here all crimes are popular. Now construct H table as
follows <x:support(x), SumTL(x), maxTL(x)>

<C1 : 4, 18, 6>

<C2 : 4, 17, 6>

<C3 : 5, 21, 6>

<C4 : 3, 14, 6>

<C5 : 2, 10, 6>

<C6 : 3, 13, 6>

Arrange them in support descending order

<C3 : 5, 21, 6>

<C1 : 4, 18, 6>

<C2 : 4, 17, 6>

<C4 : 3, 14, 6>

<C6 : 3, 13, 6>

<C5 : 2, 10, 6>

 H-table for C1

Fig 1. Length-1 PPCrime-tree

Consider {C4} as projected database

(C4, C1) – 14/3 – 2 = 2.6

(C4, C2) – 10/2 – 2 = 3

(C4, C3) – 14/3 – 2 = 2.6

(C4, C5) – 6/1 – 2 = 3

(C4, C6) – 10/2 – 2 = 3

All length-2 crime itemsets are popular since all pop values
are greater than minpop i.e., 1.5. Now consider the
projected database as {C3, C4}

{C1, C3, C4} ---- 14/3 – 3 = 1.6

{C2, C3, C4} ---- 10/2 – 3 = 2

{C5, C3, C4} ---- 6/1 – 3 = 3

{C6, C3, C4} ---- 10/2 – 3 = 2

The above length-3 crime itemsets are popular since all pop
values are greater than minpop i.e., 1.5. Now consider the
projected database as {C3, C4, C5}

{C1, C3, C4, C5} ---- 6/1 – 4 = 2

{C2, C3, C4, C5} ---- 6/1 – 4 = 2

{C6, C3, C4, C5} ---- 6/1 – 4 = 2

The above length-4 crime itemsets are also popular since
all pop values are greater than minpop i.e., 1.5. Now
consider the projected database as {C3, C4, C5, C6}

{C1, C3, C4, C5, C6} ---- 6/1 – 5 = 1

{C2, C3, C4, C5, C6} ---- 6/1 – 5 = 1

The above length-5 crime itemsets are not popular since all
pop values are less than minpop i.e., 1.5. Fig 2 shows the
local header table and local complete ppcrime-tree for
Crime Location CL1.

 H-table for C1 to C6

Fig 2. Complete PPCrime-tree for CL1

By using the above process mine the crime location CL2 to
find out the local header table and local ppcrime-tree. Fig 3
shows the local header table and local ppcrime-tree.

Header Table for C1 to C6

Fig 3. Complete PPCrime-tree CL2

C1: 3, 14, 6

C2: 4, 17, 6

C3: 2, 10, 6 C3: 2, 7, 6

C4: 2, 10, 6 C5: 1, 4, 6

C6: 1, 3, 6C5: 1, 6, 6

C6: 1, 6, 6

C3 : 5, 21, 6
C1 : 4, 18, 6
C2 : 4, 17, 6
C4 : 3, 14, 6
C6 : 3, 13, 6
C5 : 2, 10, 6

C1: 1, 4, 6

C6: 1, 4, 6

C4 1, 4, 6

C3: 1, 4, 6

C1: 1, 6, 6

C1: 1, 6, 6

C1: 1, 6, 6

C1: 1, 6, 6

C1: 1, 6, 6

C1: 1, 6, 6 C1 : 1, 6, 6
C2 : 1, 6, 6
C3 : 1, 6, 6
C4 : 1, 6, 6
C5 : 1, 6, 6
C6 : 1, 6, 6

C1 : 4, 13, 4
C2 : 4, 13, 4
C3 : 4, 14, 4
C4 : 1, 4, 4

C3: 1, 4, 6 C1: 3, 9, 4

C2: 3, 9, 4

C3: 2, 7, 4

C4: 1, 4, 4

BVS. Varma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 858-863

www.ijcsit.com 861

In crime location CL2, C5 and C6 are not popular since they
are less than minpop. The remaining crimes C1, C2, C3, C4

are popular.

TABLE 3. PPCRIME GLOBAL HEADER TABLE

Table 3 shows the global header table to find popular crime
patterns from both the locations i.e., CL1 ad CL2. In fig 2
and fig 3 we find local popular crime patterns at each
location. But our problem is to find global popular crime
patterns. For this process global header table is useful to
extract popular crime patterns. Table 4 shows the global
popular crime patterns. The crime patterns (C4, C1), (C4,
C2), (C4, C3) are length-2 crimes which are popular in both
the locations CL1 ad CL2.

TABLE 4. LENGTH-2 POPULAR CRIME PATTERNS AT MULTIPLE
LOCATIONS

In crime location CL1 (C4, C5) and (C4, C6) are popular
crimes but are not popular in CL2. These two patterns are
popular in local but are not in global. In this crime database
the global maximum length crime patterns are (C4, C1), (C4,
C2), (C4, C3).

V. EXPERIMENT RESULTS

Fig 4. Execution time over 50K

Fig 5. Execution time over 100K

Our experimentation results are performed over crime
dataset i.e., California crime dataset which is available as
open source. Our algorithm PPCrime compared with the
results of POP-tree which shows our algorithm is more
efficient and fast in finding the popular crime patterns. All
experiments are done in java on windows XP containing
2.7GHwith 2GB of main memory.

Fig 4 shows the execution time over California crime
dataset on 50K records and 100K records in fig 5. The
above two figures show our algorithm is more efficient
than the existing pop-tree.

VI. CONCLUSION

Parallel computing is a necessary component in any
large-scale data mining application. In large databases the
performance of the parallel algorithms completely based on
I/O cost and inter-process communication. In this paper we
introduced a new mining method called PPCrime to mine
popular crime patterns from different locations. This
method works at each local node supporting to popularity
and support counts which reduces inter process
communication among the nodes and getting high degree of
parallelism generates complete set of popular patterns at
global. Experiments are conducted on crime data sets at
various measures and also show that this method is
efficient in terms of memory usage and execution.

REFERENCES
1. Agarwal, R., Imielinski, T., Swamy, A.N.: Mining Association Rules

between sets of Items in Large Databases, ACM, SIGMOD
Conference of Management of Data, pp. 207 – 216 (1993).

2. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate
generation. In: ACM SIGMOD 2000, pp. 1–12 (2000).

3. Zaki, Mohammed J., and Ching-Jui Hsiao. Charm: an efficient
algorithm for closed association rule mining, Vol. 10, Technical
Report 99, 1999.

4. Minh, Q.T., Oyanagi, S., and Yamazaki K,” Mining the K-Most
Interesting Frequent Patterns Sequentially” IDEAL 2006. LNCS,
Springer, Heidelberg 2006, pp. 620 – 628.

5. Gouda Karam, and Mohammed Javeed Zaki. "Efficiently mining
maximal frequent itemsets” Data Mining, 2001. ICDM 2001,
Proceedings IEEE International Conference on. IEEE, 2001.

6. Chi Yun, Yirong Yang, Yi Xia and Richard R. Muntz.
“Cmtreeminer: Mining both closed and maximal frequent subtrees”
Advances in Knowledge Discovery and Data Mining, Springer
Berlin Heidelberg, 2004, pp. 63 – 73.

7. N. G. Khan, V. Bhaga, Effective data mining approach for crime-
terrorpattern detection using clustering algorithm technique,

0

15

30

45

60

2 4 6 8

pop‐tree

ppcrime‐tree

Ti
m
e
(s
e
c)

Nodes

California Crimeset

0

5

10

15

20

2 4 6 8 10

pop‐tree

ppcrime‐tree

Nodes

Ti
m
e
(s
)
X
 1
0
0

California Crimeset

Crime CL1 CL2 -- CLn Total

c1 pop1(c1) pop2(c1) -- popn(cn) i (popi(c1))

c2 pop1(c2) pop2(c2) -- popn(cn) i (popi(c2))

--
- --
-

--
- -- --
- --
-

cm pop1(cm) pop2(cm) -- popn(cm) i(popi(cm))

Crime Location CL1 Crime Location CL2

CTid Crime Set Pop CTid Crime Set Pop

1 C4, C1 2.6 1 C4, C1 2

2 C4, C2 3 2 C4, C2 2

3 C4, C3 2.6 3 C4, C3 2

4 C4, C5 3 4 - -

5 C4, C6 3 5 - -

BVS. Varma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 858-863

www.ijcsit.com 862

Engineering Research and Technology International Journal Vol 2
(4) (2013), pp. 2043–2048.

8. P. Phillips, I. Lee, Mining co-distribution patterns for large crime
datasets, Expert Systems with Applications International Journal 39
(14) (2012) 11556–11563.

9. O. Isafiade, A. Bagula, Citisafe: Adaptive spatial pattern knowledge
using fp-growth algorithm for crime situation recognition, in: Proc.
IEEE International Conference on Ubiquitous Intelligence and
Computing, IEEE, 2013, pp. 551–556.

10. D. Wang, W. Ding, H. Lo, T. Stepinski, J. Salazar, M. Morabito,
Crime hotspot mapping using the crime related factors- a spatial data
mining approach, Applied Intelligence Journal 39 (4) (2013) 772–
781.

11. Leung C.K.-S., Tanbeer S.K.: Mining Popular Patterns from
Transactional Databases. Springer DaWak 2012, 291-302 (2012).

12. Leung C.K.-S., Tanbeer S.K.: Finding Popular Friends in Social
Networks. IEEE Second International Conference on Cloud and
Green Computing, 501-508 (2012).

BVS. Varma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 858-863

www.ijcsit.com 863

