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Abstract— Discovering interesting patterns like popular 
crime patterns from various geographical locations plays an 
important role in data mining and knowledge discovery 
process. The researchers have been extended the frequent 
patterns to different useful patterns such as sequential, cyclic, 
emerging, periodic and many other interesting patterns. 
PPCrime-growth algorithm has been introduced and it 
involves in mining popular crime patterns from various 
geographical locations. In performing, it captures the 
popularity of individual crimes among their peers or groups 
or crimes at their local site. PPCrime-tree will be constructed 
at every local node in the first phase which captures the 
essential data for the global mining process. In the next phase 
popular crime patterns will be extracted from PPCrime-tree 
in parallel. PPCrime-algorithm will work in parallel at each 
local site in order to reduce I/O cost and also Inter-process 
communication between nodes. Our method generates all 
popular crime patterns in the final phase. The experiment 
results show that our PPCrime-method is highly efficient in 
multidimensional databases.
Keywords—Popular patterns, crime patterns, geographical 
locations, inter-process communication, parallel algorithms, 
large databases. 

I. INTRODUCTION 

In today’s information era databases are essentially 
distributed. The organizations that operate in global 
markets need to perform data mining on either 
homogeneous or heterogeneous distributed data sources. 
The distributed data mining is the process of mining data 
that has been partitioned into one or more physically / 
geographically distributed compartments. Distributed data 
mining provides a framework for scalability into smaller 
subsets that require computational resources individually. 
In the literature, one of two statements is commonly 
accepts as how data is distributed across the sites either in 
homogeneously or heterogeneously. Both the viewpoints 
accept the conceptual view point that the data tables at each 
site are partitions of a single global table. In the 
homogeneous database, the global table is horizontally 
partitioned. The tables at each site are subsets of a global 
table and they have exactly the same attributes. In the 
heterogeneous database, the global table is vertically 
partitioned and each site contains a collection of columns 
that do not have same attributes. But, each tuple at each site 
is assumed to contain a unique identifier to facilitate 
matching. Distributed data mining addresses the impact of 
distribution of users, software’s and computational 
resources on the data mining process. 

The size and high dimensionality of datasets normally 
available as input to the problem of pattern detection, 
makes it an ideal problem of solving multiple nodes in 
parallel. Memory and CPU speed limitations are the 
primary reasons that faced by a single node. So it is 
significant to design efficient parallel algorithm to do the 
job. The other reason comes from the fact that many 
transactional databases are already available in parallel 
databases or they are distributed at multiple nodes. The cost 
of bringing them all at one node or one computer for 
discovering various patterns can be prohibitively 
expensive. 

However, tree based approaches have been adopted in 
most of the studies in this field on finding frequent patterns 
or other interesting patterns. In this paper we are proposing 
an efficient method to extract popular crime patterns using 
PPCrime-algorithm that obtains global popular crime 
patterns from various nodes. The rest of the paper is 
organized as follows. Section 2 discussed with related work 
and section 3 summarizes the problem definition and 
Section 4 describes PPCrime – method to find popular 
crime patterns in large databases. Our experimental 
analysis will be shown in section 5. Finally, we conclude 
the paper in section 6.  

II. RELATED WORK

Mining of useful patterns is challenging area of interest in 
data mining and knowledge discovery research. 
Implementing frequent patterns is one of the most 
important in association rule mining. An itemset is frequent 
if its support is not less than the user given minimum 
support threshold. Apriori Algorithm[1] was the 
fundamental algorithm to mine frequent patterns from static 
databases and was introduced by Agarwal et al., in 1993 
which requires k number of scans to generate k-itemset. 
Researchers had improved the quality of association rule 
mining by introducing a huge number of algorithms and 
their mutations which are proposed on the basis of Apriori 
Algorithm. Association rule mining process is divided into 
two steps. In the first step it finds the frequent itemsets 
whose support threshold is greater than or equal to the 
given support measure. In the second step it generates 
strong association rules from the frequent itemsets. Han et 
al., in 2000 introduced a high compact support-descending 
FP-tree and FP-growth algorithm [2] to mine frequent 
itemsets without generating candidate sets which requires 
only two database scans. A large number of patterns are 
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normally generated when support threshold is set to low, 
and most of them are found to be insignificant depending 
on the application or user constraint. As a result several 
techniques have been proposed recently to reduce the desire 
result set by some of the user interesting parameters such as 
closed [3] , kmost [4 ], maximum length [5] etc., are found 
to be useful in discovering frequent patterns of special 
interest among users. The other user interesting time 
interval parameter may be a regular pattern. Users may 
perhaps be interested on frequent patterns that occur at 
regular intervals. For example, a web site administrator to 
improve web page design may be interested in regularly 
visited web pages rather than on the heavily hit web pages 
for a specific period of time. The idea of maximal frequent 
itemset [6] was proposed in the year 1998, an itemset is 
maximal frequent if its support is frequent and it should not 
be a subset by any other frequent itemset. After the 
frequent patterns came into existence, numerous techniques 
have been introduced. These works are categorized into 
two main “categories”. First “category” mainly focuses on 
algorithmic efficiency i.e., to avoid the candidate 
generation-and-test approach of the Apriori algorithm, a 
tree-based algorithm called FP-growth was proposed to 
build an FP-tree to capture the contents of trans-actional 
database (TDB) so that frequent patterns can be mined 
recursively from the FP-tree with a restricted test-only 
approach. Techniques in the second “category” mainly 
focused on extending the notion of frequent patterns to 
other interesting or important existing patterns such as, 
episodes, maximal, clusters and closed item sets. However, 
the mining of these patterns are based on the 
support/frequency measure. While support/frequency is a 
useful metric, support-based frequent pattern mining may 
not be sufficient to discover. Crime pattern algorithms 
[7][8][9][10]  used to derive crime patterns in order to 
assist public safety and security agencies in achieving their 
objective of deterring crime and promoting citizen’s safety. 
Leung C.K.S. et. al [11] [12] introduced popular pattern 
mining in transactions and in popular friends in social 
groups. 

III. PROBLEM DEFINITION 

In this section the basic definitions of the problem 
described. 
Crime Transaction Popularity: Pop(X, ctj) of a pattern X 
in crime transaction ctj measures the membership degree of 
X in ctj. We compute the membership degree based on the 
difference between the crime transaction length |ctj| and 
pattern size |X|. 
 

,൫ܺ݌݋ܲ ௝൯ݐܿ ൌ หܿݐ௝ห െ	 |ܺ|    
 

Long Crime Transaction Popularity: Pop(X, ctmaxCTL(X)) 
of a pattern X in crime transaction ctmaxCTL(X) measures the 
membership degree of X in ctmaxCTL, where ctmaxCTL(x) is the 
crime transaction having maximum length in DBX . 
  

,൫ܺ݌݋ܲ ௠௔௫஼்௅ሺ௑ሻ൯ݐܿ ൌ ൫max௖௧௝ఢ	஽஻೉|݆ܿݐ|൯ െ	 |ܺ|   
 

Popularity: Pop(X) of a pattern X in the CTDB measures 
an aggregated membership degree of X in all crime 
transaction in the CTDB. It is defined as an average of all 
crime transaction popularities of X. 
 

ሺܺሻ݌݋ܲ ൌ 	
ଵ

|஽஻೉|
	∑ ,ሺܺ݌݋ܲ ∈஽஻೉	௝௖௧ೕݐܿ ሻ   

 
Popular Crime: A user specified minimum popularity 
threshold min_pop is given, a crime X is considered 
popular if its popularity is atleast min_pop ( i.e Pop(X) ≥ 
minpop). 
 
Popularity Pop(X): of a pattern X in the CTDB measures 
an aggregate membership degree of X in the CTDB. It is 
defined in terms of ܮܶܥ݉ݑݏሺܺሻ	=	∑ ∈ವಳ೉	௝௖௧ೕݐܿ|

| as 

follows. 
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The proposed parallel mining technique to extract popular 
crime patterns from various geographical locations which 
was incorporated in multi-dimensional database. 
Performing popular crime pattern mining which captures 
the popularity of individual crimes among their peers or 
groups or crimes. The procedure works in parallel at each 
local site in order to reduce I/O cost and inter-process 
communication generates all popular crime patterns in the 
final phase.  

IV. PARALLEL POPULAR CRIME MINING PROCESS 

In this section we describe our proposed method called 
PPCrime approach to extract popular crime patterns in 
parallel at different locations. Different nodes indicate 
different locations, data where each node maintains 
resources like processor, memory, etc. Accumulate 
different databases from different resources and then divide 
this database into specified number of partitions with non-
overlapping partitions in order to maintain data in multi 
dimensions at specified locations. Consider the instance 
crime database in the process of mining popular crime 
patterns in parallel. 
 

Assume DB = {p1, p2, p3,……pn} be a number 
of partitions in parallel in a homogeneous distributed 
system. The database DB is alienated into equal number of 
n partitions like D1, D2, D3,……Dn, and each partition Di is 
assigned to each individual partition pi. Let popularity of 
Crime C is represented as Popi(C) in dbi and support count 
of Crime C is represented as supi(C) and maximum 
transaction length as maxTLi(C) in dbi. Pop(C), sup(C), 
maxTL(C) are the global popularity threshold, global 
support count and maximum transaction length of crime C 
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in database DB respectively. Let λ is user given minimum 
popularity threshold. To accumulate all regi(S) and supi(S) 
from each partition to find global popularity Pop(C), global 
support count sup(S) and global maximal transaction length 
maxTL(C) respectively. Popular crime pattern C is mined 
which satisfies user given global popularity. 

TABLE 1 CRIME DATABASES AT MULTIPLE LOCATIONS 

 
In this process first databases are scanned once to get the 
count of every single item in every dimension. Finding 
popular 1-items are those whose calculations pass their 
corresponding threshold. In the second step, < x: support(x), 
maxCTL(x), Pop(x)> information is acquired at each domain 
items. The crimes with popularity which are less than given 
popularity are not eliminated as in frequent pattern mining 
instead their super pattern mining will takes place into 
considerations and checked whether they are popular crimes 
or not. Hence, super-pattern popularity checking is required 
to find the crimes that are popular or not. Now crimes appear 
in the pop-tree as long as their counts pass their 
corresponding threshold. Thus, a popular crime pattern 
which includes the whole taxonomy information about a 
crime is also interesting to the user. Finally, all popular 
crime patterns are generated by using recursively mining the 
pop-tree. This procedure is continued until all popular 
patterns for all single crimes are generated. The popular 
crimes which are generated at every dimension are 
accumulated at header node and then popular crimes are 
extracted based on user given popularity threshold globally. 
 
Consider the database Table 1, which indicates a list of 
crime data in two different locations. Table 2 represents 
popularity of each crime which is in two separate locations. 
Here, database is scanned once to get the count of every 
single crime in every single dimension. The popularity 1-
dimensions are those whose counts pass their 
corresponding minimum popularity threshold. The 
minimum popularity threshold considered as 1.5 and the 
crimes whose count is less than minpop value are not 
eliminated as in frequent patterns instead their superset 
popularity checkup is considered. If its superset value 
exceeds minpop value then that crime will not be 
eliminated satisfies downward closure property. This 
process is repeated for n-dimensions. 
 
Mining of popular crime patterns has been proposed by 
PPCrime-growth algorithm which consists of two key 
methods. 
1. Construction of global PPCrime-tree 
2. Mining of popular patterns from global PPCrime-tree  

Recall that, to mine popular crime patterns, the PPCrime-
growth algorithm applies two key procedures: (i) 

construction of a PPCrime-tree at local and (ii) mining of 
popular crime patterns from the PPCrime-tree. The 
PPCrime-growth finds popular crime patterns from the 
PPCrime-tree, in which each tree node captures its 
occurrence count, total transaction length, and maximum 
crime transaction length. The algorithm finds popular crime 
patterns by constructing the projected database for potential 
popular crime itemsets and recursively mining their 
extensions. While constructing the conditional database 
from a projected database, perform a super-pattern 
popularity check for extensions of any unpopular crime, 
and delete the crime only when it fails the check. Such 
pruning technique was called as a lazy pruning. Recall that 
the PPCrime-growth recursively mines the projected 
databases of all items in Header table Table 4. Before 
constructing the projected database for a crime C in Header 
table, output the crime as a popular crime pattern if its 
popularity is at least minpop.  
 
From Crime Location 1, calculate the popularities of each 
individual crime as follows 
 
Pop(C1) = 18/4 – 1 = 3.5 
Pop(C2) =  17/4 – 1 = 2.25 
Pop(C3) = 21/5 – 1 = 3.2 
Pop(C4) = 14/3 – 1 =  3.63 
Pop(C5) = 10/2 – 1 = 4 
Pop(C6) = 13/3 – 1 = 3.3 
 
From Crime Location 2, calculate the popularities of each 
individual crime as follows 
 
Pop(C1) = 13/4 – 1 = 2.25 
Pop(C2) =  13/4 – 1 = 2.25 
Pop(C3) = 14/4 – 1 = 2.5 
Pop(C4) = 4/1 – 1 =  3 
Pop(C5) = 7/2 – 1 = 2.5 
Pop(C6) = 3/1 – 1 = 2 
 
The popularities of each individual crimes of various crime 
locations are collected and stored at one place or in one 
tabe as a multidimensional database can be seen in Table 2. 

TABLE 2 CRIME DATABASES AT MULTIPLE LOCATIONS WITH 
POPULARITY 

Crime Location CL1 Crime Location CL2 
CTid Crime Set CTid Crime Set 

1 C1,C2, C3, C4, C5, C6 1 C3, C5, C6 
2 C1,C2, C3, C4 2 C1,C2, C3, C4 
3 C1,C2, C3, C5 3 C1,C2 
4 C2, C3, C6 4 C1,C2, C3 
5 C1, C3, C4, C6, 5 C1,C2, C3, C5 

Crime Location CL1 Crime Location CL2 

CTid 
Crime Set 

Pop CTid Crime Set Pop 

1 C1 3.5 1 C1 2.25 

2 C2 3.25 2 C2 2.25 

3 C3 3.2 3 C3 2.5 

4 C4 3.63 4 C4 3 

5 C5 4 5 C5 3 

6 C6 3.3 6 C6 3 
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So here all crimes are popular. Now construct H table as 
follows <x:support(x), SumTL(x), maxTL(x)> 

<C1 : 4, 18, 6> 

<C2 : 4, 17, 6> 

<C3 : 5, 21, 6> 

<C4 : 3, 14, 6> 

<C5 : 2, 10, 6> 

<C6 : 3, 13, 6> 

 
Arrange them in support descending order 
 

<C3 : 5, 21, 6> 

<C1 : 4, 18, 6> 

<C2 : 4, 17, 6> 

<C4 : 3, 14, 6> 

<C6 : 3, 13, 6> 

<C5 : 2, 10, 6> 

              H-table for C1 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Length-1 PPCrime-tree 

Consider {C4} as projected database 

(C4, C1) – 14/3 – 2 = 2.6 

(C4, C2) –  10/2 – 2 = 3 

(C4, C3) –  14/3 – 2 = 2.6 

(C4, C5) –  6/1 – 2 = 3 

(C4, C6) –  10/2 – 2 = 3 

All length-2 crime itemsets are popular since all pop values 
are greater than minpop i.e., 1.5. Now consider the 
projected database as {C3, C4}  

{C1, C3, C4} ---- 14/3 – 3 = 1.6 

{C2, C3, C4} ---- 10/2 – 3 = 2 

{C5, C3, C4} ---- 6/1 – 3 = 3 

{C6, C3, C4} ---- 10/2 – 3 = 2 

The above length-3 crime itemsets are popular since all pop 
values are greater than minpop i.e., 1.5. Now consider the 
projected database as {C3, C4, C5}  

{C1, C3, C4, C5} ---- 6/1 – 4 = 2 

{C2, C3, C4, C5} ---- 6/1 – 4 = 2 

{C6, C3, C4, C5} ---- 6/1 – 4 = 2 

The above length-4 crime itemsets are also popular since 
all pop values are greater than minpop i.e., 1.5. Now 
consider the projected database as {C3, C4, C5, C6}  

{C1, C3, C4, C5, C6} ---- 6/1 – 5 = 1 

{C2, C3, C4, C5, C6} ---- 6/1 – 5 = 1 

The above length-5 crime itemsets are not popular since all 
pop values are less than minpop i.e., 1.5.  Fig 2 shows the 
local header table and local complete ppcrime-tree for 
Crime Location CL1. 

 

        H-table for C1 to C6 

 

 

 

 

 

 

       

 

 

 

 

 

 

Fig 2. Complete PPCrime-tree for CL1 

By using the above process mine the crime location CL2 to 
find out the local header table and local ppcrime-tree. Fig 3 
shows the local header table and local ppcrime-tree. 

Header Table for C1 to C6 

 

 

 

 

 

 

 

 

 

Fig 3. Complete PPCrime-tree CL2 

C1: 3, 14, 6 

C2: 4, 17, 6 

C3: 2, 10, 6 C3: 2, 7, 6 

C4: 2, 10, 6 C5: 1, 4, 6 

C6: 1, 3, 6C5: 1, 6, 6

C6: 1, 6, 6

C3 : 5, 21, 6 
C1 : 4, 18, 6 
C2 : 4, 17, 6 
C4 : 3, 14, 6 
C6 : 3, 13, 6 
C5 : 2, 10, 6 

C1: 1, 4, 6

C6: 1, 4, 6

C4 1, 4, 6

C3: 1, 4, 6

C1: 1, 6, 6 

C1: 1, 6, 6 

C1: 1, 6, 6 

C1: 1, 6, 6 

C1: 1, 6, 6 

C1: 1, 6, 6 C1 : 1, 6, 6 
C2 : 1, 6, 6 
C3 : 1, 6, 6 
C4 : 1, 6, 6 
C5 : 1, 6, 6 
C6 : 1, 6, 6 

C1 : 4, 13, 4 
C2 : 4, 13, 4 
C3 : 4, 14, 4 
C4 : 1, 4, 4 

C3: 1, 4, 6  C1: 3, 9, 4

C2: 3, 9, 4

C3: 2, 7, 4

C4: 1, 4, 4
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In crime location CL2, C5 and C6 are not popular since they 
are less than minpop. The remaining crimes C1, C2, C3, C4 

are popular. 

TABLE 3.  PPCRIME  GLOBAL HEADER TABLE 

 
 
Table 3 shows the global header table to find popular crime 
patterns from both the locations i.e., CL1 ad CL2. In fig 2 
and fig 3 we find local popular crime patterns at each 
location. But our problem is to find global popular crime 
patterns. For this process global header table is useful to 
extract popular crime patterns. Table 4 shows the global 
popular crime patterns. The crime patterns (C4, C1), (C4, 
C2), (C4, C3) are length-2 crimes which are popular in both 
the locations CL1 ad CL2. 
 

TABLE 4. LENGTH-2 POPULAR CRIME PATTERNS AT MULTIPLE 
LOCATIONS 

 
In crime location CL1 (C4, C5) and (C4, C6) are popular 
crimes but are not popular in CL2. These two patterns are 
popular in local but are not in global. In this crime database 
the global maximum length crime patterns are (C4, C1), (C4, 
C2), (C4, C3). 
 

V. EXPERIMENT RESULTS 

 

Fig 4. Execution time over 50K 

 

Fig 5. Execution time over 100K 

Our experimentation results are performed over crime 
dataset i.e., California crime dataset which is available as  
open source. Our algorithm PPCrime compared with the 
results of POP-tree which shows our algorithm is more 
efficient and fast in finding the popular crime patterns. All 
experiments are done in java on windows XP containing 
2.7GHwith 2GB of main memory. 
 
Fig 4 shows the execution time over California crime 
dataset on 50K records and 100K records in fig 5. The 
above two figures show our algorithm is more efficient 
than the existing pop-tree.  

VI. CONCLUSION 

Parallel computing is a necessary component in any 
large-scale data mining application. In large databases the 
performance of the parallel algorithms completely based on 
I/O cost and inter-process communication. In this paper we 
introduced a new mining method called PPCrime to mine 
popular crime patterns from different locations. This 
method works at each local node supporting to popularity 
and support counts which reduces inter process 
communication among the nodes and getting high degree of 
parallelism generates complete set of popular patterns at 
global. Experiments are conducted on crime data sets at 
various measures and also show that this method is 
efficient in terms of memory usage and execution. 

REFERENCES 
1. Agarwal, R., Imielinski, T., Swamy, A.N.: Mining Association Rules 

between sets of Items in Large Databases, ACM, SIGMOD 
Conference of Management of Data, pp. 207 – 216 (1993). 

2. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate 
generation. In: ACM SIGMOD 2000, pp. 1–12 (2000). 

3. Zaki, Mohammed J., and Ching-Jui Hsiao. Charm: an efficient 
algorithm for closed association rule mining, Vol. 10, Technical 
Report 99, 1999. 

4. Minh, Q.T., Oyanagi, S., and Yamazaki K,” Mining the K-Most 
Interesting Frequent Patterns Sequentially”  IDEAL 2006. LNCS, 
Springer, Heidelberg 2006, pp. 620 – 628. 

5. Gouda Karam, and Mohammed Javeed Zaki. "Efficiently mining 
maximal frequent itemsets” Data Mining, 2001. ICDM 2001, 
Proceedings IEEE International Conference on. IEEE, 2001. 

6. Chi Yun, Yirong Yang, Yi Xia and Richard R. Muntz. 
“Cmtreeminer: Mining both closed and maximal frequent subtrees” 
Advances in Knowledge Discovery and Data Mining, Springer 
Berlin Heidelberg, 2004, pp. 63 – 73. 

7. N. G. Khan, V. Bhaga, Effective data mining approach for crime-
terrorpattern detection using clustering algorithm technique, 

0

15

30

45

60

2 4 6 8

pop‐tree

ppcrime‐tree

Ti
m
e
(s
e
c)

# Nodes

California Crimeset

0

5

10

15

20

2 4 6 8 10

pop‐tree

ppcrime‐tree

# Nodes

Ti
m
e
(s
) 
X
 1
0
0

California Crimeset

Crime CL1 CL2 -- CLn Total 

c1 pop1(c1)  pop2(c1) -- popn(cn) i ( popi(c1)) 

c2 pop1(c2) pop2(c2) -- popn(cn) i  (popi(c2)) 

--
- --
- 

--
- -- --
- --
- 

cm pop1(cm) pop2(cm) -- popn(cm) i(popi(cm)) 

Crime Location CL1 Crime Location CL2 

CTid Crime Set Pop CTid Crime Set Pop 

1 C4, C1 2.6 1 C4, C1 2 

2 C4, C2 3 2 C4, C2 2 

3 C4, C3 2.6 3 C4, C3 2 

4 C4, C5 3 4 - - 

5 C4, C6 3 5 - - 

BVS. Varma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 858-863

www.ijcsit.com 862



Engineering Research and Technology International Journal Vol 2 
(4) (2013), pp. 2043–2048. 

8. P. Phillips, I. Lee, Mining co-distribution patterns for large crime 
datasets, Expert Systems with Applications International Journal 39 
(14) (2012) 11556–11563. 

9. O. Isafiade, A. Bagula, Citisafe: Adaptive spatial pattern knowledge 
using fp-growth algorithm for crime situation recognition, in: Proc. 
IEEE International Conference on Ubiquitous Intelligence and 
Computing, IEEE, 2013, pp. 551–556. 

10. D. Wang, W. Ding, H. Lo, T. Stepinski, J. Salazar, M. Morabito, 
Crime hotspot mapping using the crime related factors- a spatial data 
mining approach, Applied Intelligence Journal 39 (4) (2013) 772–
781. 

11. Leung C.K.-S., Tanbeer S.K.: Mining Popular Patterns from 
Transactional Databases. Springer DaWak 2012, 291-302 (2012).  

12. Leung C.K.-S., Tanbeer S.K.: Finding Popular Friends in Social 
Networks. IEEE Second International Conference on Cloud and 
Green Computing, 501-508 (2012). 

 

BVS. Varma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 858-863

www.ijcsit.com 863




